Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.

Identifieur interne : 000578 ( Main/Exploration ); précédent : 000577; suivant : 000579

A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.

Auteurs : Cuiyun Hu ; Caifang Yu ; Yanhua Liu ; Xianhui Hou ; Xiaoyun Liu ; Yunfei Hu [République populaire de Chine] ; Changwen Jin [République populaire de Chine]

Source :

RBID : pubmed:26224634

Descripteurs français

English descriptors

Abstract

Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family.

DOI: 10.1074/jbc.M115.659896
PubMed: 26224634
PubMed Central: PMC4571977


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.</title>
<author>
<name sortKey="Hu, Cuiyun" sort="Hu, Cuiyun" uniqKey="Hu C" first="Cuiyun" last="Hu">Cuiyun Hu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</nlm:affiliation>
<wicri:noCountry code="subField">Beijing Nuclear Magnetic Resonance Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yu, Caifang" sort="Yu, Caifang" uniqKey="Yu C" first="Caifang" last="Yu">Caifang Yu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</nlm:affiliation>
<wicri:noCountry code="subField">Beijing Nuclear Magnetic Resonance Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yanhua" sort="Liu, Yanhua" uniqKey="Liu Y" first="Yanhua" last="Liu">Yanhua Liu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering.</nlm:affiliation>
<wicri:noCountry code="no comma">From the College of Chemistry and Molecular Engineering.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xianhui" sort="Hou, Xianhui" uniqKey="Hou X" first="Xianhui" last="Hou">Xianhui Hou</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</nlm:affiliation>
<wicri:noCountry code="subField">Beijing Nuclear Magnetic Resonance Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xiaoyun" sort="Liu, Xiaoyun" uniqKey="Liu X" first="Xiaoyun" last="Liu">Xiaoyun Liu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering.</nlm:affiliation>
<wicri:noCountry code="no comma">From the College of Chemistry and Molecular Engineering.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yunfei" sort="Hu, Yunfei" uniqKey="Hu Y" first="Yunfei" last="Hu">Yunfei Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, yunfei@pku.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center</wicri:regionArea>
<wicri:noRegion>Beijing Nuclear Magnetic Resonance Center</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China changwen@pku.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26224634</idno>
<idno type="pmid">26224634</idno>
<idno type="doi">10.1074/jbc.M115.659896</idno>
<idno type="pmc">PMC4571977</idno>
<idno type="wicri:Area/Main/Corpus">000510</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000510</idno>
<idno type="wicri:Area/Main/Curation">000510</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000510</idno>
<idno type="wicri:Area/Main/Exploration">000510</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.</title>
<author>
<name sortKey="Hu, Cuiyun" sort="Hu, Cuiyun" uniqKey="Hu C" first="Cuiyun" last="Hu">Cuiyun Hu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</nlm:affiliation>
<wicri:noCountry code="subField">Beijing Nuclear Magnetic Resonance Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yu, Caifang" sort="Yu, Caifang" uniqKey="Yu C" first="Caifang" last="Yu">Caifang Yu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</nlm:affiliation>
<wicri:noCountry code="subField">Beijing Nuclear Magnetic Resonance Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yanhua" sort="Liu, Yanhua" uniqKey="Liu Y" first="Yanhua" last="Liu">Yanhua Liu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering.</nlm:affiliation>
<wicri:noCountry code="no comma">From the College of Chemistry and Molecular Engineering.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xianhui" sort="Hou, Xianhui" uniqKey="Hou X" first="Xianhui" last="Hou">Xianhui Hou</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</nlm:affiliation>
<wicri:noCountry code="subField">Beijing Nuclear Magnetic Resonance Center</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xiaoyun" sort="Liu, Xiaoyun" uniqKey="Liu X" first="Xiaoyun" last="Liu">Xiaoyun Liu</name>
<affiliation>
<nlm:affiliation>From the College of Chemistry and Molecular Engineering.</nlm:affiliation>
<wicri:noCountry code="no comma">From the College of Chemistry and Molecular Engineering.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hu, Yunfei" sort="Hu, Yunfei" uniqKey="Hu Y" first="Yunfei" last="Hu">Yunfei Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, yunfei@pku.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center</wicri:regionArea>
<wicri:noRegion>Beijing Nuclear Magnetic Resonance Center</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China changwen@pku.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arsenate Reductases (chemistry)</term>
<term>Arsenate Reductases (genetics)</term>
<term>Arsenate Reductases (metabolism)</term>
<term>Arsenates (chemistry)</term>
<term>Arsenates (metabolism)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>Disulfides (metabolism)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Synechocystis (enzymology)</term>
<term>Synechocystis (genetics)</term>
<term>Thioredoxins (chemistry)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arsenate Reductases (composition chimique)</term>
<term>Arsenate Reductases (génétique)</term>
<term>Arsenate Reductases (métabolisme)</term>
<term>Arséniates (composition chimique)</term>
<term>Arséniates (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Disulfures (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Synechocystis (enzymologie)</term>
<term>Synechocystis (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thiols (métabolisme)</term>
<term>Thiorédoxines (composition chimique)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Arsenates</term>
<term>Bacterial Proteins</term>
<term>Glutaredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Bacterial Proteins</term>
<term>Glutaredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenate Reductases</term>
<term>Arsenates</term>
<term>Bacterial Proteins</term>
<term>Disulfides</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Sulfhydryl Compounds</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Arséniates</term>
<term>Glutarédoxines</term>
<term>Protéines bactériennes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Glutarédoxines</term>
<term>Protéines bactériennes</term>
<term>Synechocystis</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arsenate Reductases</term>
<term>Arséniates</term>
<term>Disulfures</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines bactériennes</term>
<term>Thiols</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Conformation</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26224634</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>290</Volume>
<Issue>36</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.</ArticleTitle>
<Pagination>
<MedlinePgn>22262-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M115.659896</ELocationID>
<Abstract>
<AbstractText>Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family. </AbstractText>
<CopyrightInformation>© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Cuiyun</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Caifang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yanhua</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Xianhui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xiaoyun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yunfei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, yunfei@pku.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Changwen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China changwen@pku.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1JFV</AccessionNumber>
<AccessionNumber>1LJL</AccessionNumber>
<AccessionNumber>1LK0</AccessionNumber>
<AccessionNumber>1Z2E</AccessionNumber>
<AccessionNumber>2IPA</AccessionNumber>
<AccessionNumber>2MYN</AccessionNumber>
<AccessionNumber>2MYP</AccessionNumber>
<AccessionNumber>2MYT</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001149">Arsenates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.20.-</RegistryNumber>
<NameOfSubstance UI="D053502">Arsenate Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N7CIZ75ZPN</RegistryNumber>
<NameOfSubstance UI="C025657">arsenic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053502" MajorTopicYN="N">Arsenate Reductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001149" MajorTopicYN="N">Arsenates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046939" MajorTopicYN="N">Synechocystis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ArsC</Keyword>
<Keyword MajorTopicYN="N">SynArsC</Keyword>
<Keyword MajorTopicYN="N">arsenate reductase</Keyword>
<Keyword MajorTopicYN="N">arsenic detoxification</Keyword>
<Keyword MajorTopicYN="N">enzyme</Keyword>
<Keyword MajorTopicYN="N">enzyme catalysis</Keyword>
<Keyword MajorTopicYN="N">enzyme mechanism</Keyword>
<Keyword MajorTopicYN="N">nuclear magnetic resonance (NMR)</Keyword>
<Keyword MajorTopicYN="N">oxidation-reduction (redox)</Keyword>
<Keyword MajorTopicYN="N">protein structure</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26224634</ArticleId>
<ArticleId IdType="pii">M115.659896</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M115.659896</ArticleId>
<ArticleId IdType="pmc">PMC4571977</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1999 Mar;13(3):289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 14;275(28):21149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2000 Oct;18(2):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2001 Apr;19(4):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11370778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Oct;8(10):843-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11573087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11698660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Nov;9(11):1071-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11709171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2002 Jan;7(1-2):146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11862551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Apr;44(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 May 24;319(1):209-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2002 Aug;4(4):596-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Oct 2;529(1):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 28;278(9):7154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1409657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Dec;185(23):6780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2004 Sep;3(9):872-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 Sep;13(9):2330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Nov 25;280(47):39601-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16192272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1668-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Sep 8;362(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 13;282(15):11078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17303556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Mar 13;386(5):1229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 1999 Jul;49(3):619-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18967638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Jun;191(11):3534-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2011 Apr;5(1):85-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20960080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1824(2):392-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22155275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 Sep 23;109:16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24984109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1999;63(6):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27389337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 14;33(23):7288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8003492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jun 14;33(23):7294-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8003493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Oct 17;273(1):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Apr;180(7):1655-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 1998 Apr;131(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1998 Oct;22(4):229-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862122</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Pékin</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Pékin</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Hou, Xianhui" sort="Hou, Xianhui" uniqKey="Hou X" first="Xianhui" last="Hou">Xianhui Hou</name>
<name sortKey="Hu, Cuiyun" sort="Hu, Cuiyun" uniqKey="Hu C" first="Cuiyun" last="Hu">Cuiyun Hu</name>
<name sortKey="Liu, Xiaoyun" sort="Liu, Xiaoyun" uniqKey="Liu X" first="Xiaoyun" last="Liu">Xiaoyun Liu</name>
<name sortKey="Liu, Yanhua" sort="Liu, Yanhua" uniqKey="Liu Y" first="Yanhua" last="Liu">Yanhua Liu</name>
<name sortKey="Yu, Caifang" sort="Yu, Caifang" uniqKey="Yu C" first="Caifang" last="Yu">Caifang Yu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hu, Yunfei" sort="Hu, Yunfei" uniqKey="Hu Y" first="Yunfei" last="Hu">Yunfei Hu</name>
</noRegion>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000578 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000578 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26224634
   |texte=   A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26224634" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020